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60174 Norrköping, Sweden
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Abstract
We have developed a mean-field first-principles approach for studying electronic and transport
properties of low dimensional lateral structures in the integer quantum Hall regime. The
electron interactions and spin effects are included within the spin density functional theory in
the local density approximation where the conductance, the density, the effective potentials and
the band structure are calculated on the basis of the Green’s function technique. In this paper we
present a systematic review of the major results obtained on the energetics, spin polarization,
effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge
overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and
open quantum dots. In particular, we discuss how the spin-resolved subband structure, the
current densities, the confining potentials, as well as the spin polarization of the electron and
current densities in quantum wires and antidots evolve when an applied magnetic field varies.
We also discuss the role of the electron interaction and spin effects in the conductance of open
systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis
is given to the effect of the electron interaction on the conductance oscillations and their
statistics in open quantum dots as well as to interpretation of the related experiments on the
ultralow temperature saturation of the coherence time in open dots.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electron–electron interaction is known to have a great impact
on electronic and transport properties of low dimensional
structures such as quantum wires, quantum point contacts,
quantum dots and antidots. This includes such pronounced
examples as Coulomb blockade [1] and Kondo effect [2] in
quantum dots, exchange enhancement of the g-factor [3] and
a spatial spin separation on wire edges in the quantum Hall
regime [4], the ‘0.7-anomaly’ in quantum point contacts [5]
and many others.

Theoretical description of electron interactions in the
above systems can be performed from many different
standpoints, including field-theoretical approaches, exact
numerical techniques, perturbation methods, mean-field

theories etc. Very often this description is based on model
Hamiltonians containing phenomenological parameters of the
theory such as coupling strengths or charging constants.
In many cases it is not always straightforward to relate
quantitatively the above parameters to the physical processes
they represent in the real system and sometimes it is not even
obvious whether a model description is sufficient to capture the
essential physics. At the same time, it is now well recognized
that a detailed understanding and interpretation of experiments
might require quantitative microscopical modeling of the
system at hand, free from phenomenological parameters and
not relying on model Hamiltonians which validity is poorly
controlled. The importance of such modeling can be illustrated
by examples including the quantitative description of the
compressible and/or incompressible strips in magnetic field
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Figure 1. Schematic geometries and bare confining potentials (upper and lower panels respectively) for (a) a split-gate quantum wire and
(b) a cleaved-edge overgrown quantum wire. For the case of the split-gate wire the bare confining potential Vconf(y) is well approximated by
the parabolic confinement with V0 = −85 meV, h̄ωc = 2 meV. With these parameters the local (sheet) density in the wire center
n = 1.5 × 1015 m−2 and the effective width of the wire w ≈ 400 nm. For the case of the cleaved-edge wire, the bottom of the confinement
potential V0 = −0.1 eV, and the wire width w = 300 nm. This corresponds to the sheet electron density in the wire center
n2D ≈ 1.5 × 1015 m−2. For both wires the distance between the 2DEG and the surface b = 60 nm, temperature T = 1 K, EF = 0.

at the edges of the two-dimensional electron gas [6] or
explanation of the Hund rule observed in few-electron quantum
dots [7], just to name a few examples.

One of the most powerful approaches capable of providing
detailed microscopical information on the system at hand
is the mean-field approach, such as the density functional
theory (DFT) or the Hartree–Fock theory (HF) [8]. In these
methods, each particle moves in the effective interaction
potential generated by the rest of the particles. The
strength of the mean-field approaches is that they can provide
detailed microscopic information about electron densities,
wavefunctions, potentials, etc (which is not possible within
field-theoretical approaches that typically rely on model
Hamiltonians and phenomenological parameters of the theory).
At the same time, the mean-field approaches can deal with
large realistic systems containing hundreds or thousands of
electrons. Such systems would be forbiddingly large for the
exact methods such as quantum Monte Carlo or configurational
integration.

We have recently applied the mean-field approaches
to study electronic and transport properties of various low
dimensional lateral structures, including quantum wires,
quantum antidots, quantum point contacts and open quantum
dots [11–19]. The developed approaches correspond to the
first-principles magnetoconductance calculations (within the
effective mass approximation), that start from a geometrical
layout of the device, are free from phenomenological
parameters and do not rely on model Hamiltonians whose
validity is poorly controlled. In the present paper we
provide a systematic review of the major obtained results.
The paper is organized as follows. A brief presentation
of electronic structure calculations for quantum wires in
the integer quantum Hall regime is given in section 2.1.
section 2.2 describes energetics of the split-gate quantum wire
including magnetosubband structure and spin polarizations,
spin-resolved edge state structure, effect of the external

confinement and others. In this section we also compare the
results obtained within the spin-DFT with those calculated
on the basis of the Hartree–Fock theory, as well as compare
the edge state structure in quantum wires and in quantum
antidots. The energetics of cleaved-edge overgrown quantum
wire is described in section 2.3. Section 3 is devoted
to conductance of open systems such as quantum point
contacts and open quantum dots. In the concluding section
we summarize obtained results, discuss limitations of the
developed approaches as well as provide an outline for the
future research.

2. Quantum wires in the integer quantum Hall
regime

2.1. Model and method

We study an infinitely long quantum wire in a perpendicular
magnetic field B . We consider two types of confinements,
a split-gate quantum wire (figure 1(a)), and a cleaved-edge
overgrown quantum wire (figure 1(b)). The Hamiltonian reads,
H = ∑

σ (H0 + V σ (y)), where H0 is the kinetic energy in the

Landau gage, H0 = − h̄2

2m∗ {( ∂
∂x − eiBy

h̄ )2 + ∂2

∂y2 }, and V σ (y) is
the total confinement potential [11–13, 15, 19],

V σ (y) = Vconf(y) + V σ
eff(y) + gμb Bσ, (1)

σ = ± 1
2 describes spin-up and spin-down states, ↑, ↓,

and m∗ = 0.067me is the GaAs effective mass. The
last term in equation (1) accounts for Zeeman energy where
μb = eh̄/2me is the Bohr magneton, and the bulk g
factor of GaAs is g = −0.44. In the split-gate geometry
the confining potential Vconf(y) is given by the electrostatic
potential from the gates, donor layers and the Schottky barrier
(the corresponding analytical expressions for these potential
can be found in [9, 10]; the Schottky barrier is chosen to
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be VSchottky = 0.8 eV). The analytic expression for Vconf(y)

for the split-gate wire is well approximated by the parabolic
confinement, Vconf(y) = V0 + m∗

2 (ω0 y)2, where V0 defines the
bottom of the potential (we set the Fermi energy EF = 0). The
cleaved-edge overgrown quantum wire corresponds to the case
of a hard wall confinement. The corresponding confinement
potential Vconf(y) is sketched in figure 1(b). The effective
potential, V σ

eff(y) within the framework of the Kohn–Sham
density functional theory reads [8],

V σ
eff(y) = VH(y) + V σ

xc(y), (2)

where VH(y) is the Hartree potential due to the electron density
n(y) = ∑

σ nσ (y) (including the mirror charges) [11],

VH(y) = − e2

4πε0εr

∫ +∞

−∞
dy ′n(y ′) ln

(
y − y ′)2

(y − y ′)2 + 4b2
, (3)

with b being the distance from the electron gas to the surface.
The exchange and correlation potential Vxc(y) in the local
density approximation (LDA) is given by [8]

V σ
xc = δ

δnσ
{nεxc (n, ζ )} (4)

where ζ = n↑−n↓
n↑+n↓ is the local spin polarization. In the

present paper we use a parametrization of the exchange and
correlation energy εxc given by Tanatar and Ceperly (TC) [20].
Note that we also performed calculations on the basis of a
parametrization recently provided by Attacalite et al [21] and
found only a marginal difference with the results based on the
TC functional.

The spin-resolved electron density in the wire can be
expressed via the Green’s function Gσ (y, y, E) [22]

nσ (y) = − 1

π
Im

[∫ ∞

−∞
dE Gσ (y, y, E) fFD(E − EF)

]

,

(5)
where fFD(E − EF) is the Fermi–Dirac distribution function.
The Green’s function, the Bloch states, the electron and current
densities are calculated self-consistently using the technique
described in detail in [11]. Knowledge of the wave vectors
kσ

α for different Bloch states α allows us to recover the
subband structure, i.e. to calculate an overage position yσ

α of
the wavefunctions for different modes α for the given energy
E [23],

yσ
α = h̄kσ

α

eB
. (6)

We calculate the spin-resolved conductance of the wire on the
basis of the linear response Landauer formula,

Gσ = e2

h

∑

α

∫ ∞

Eσ
th α

dE

(

−∂ f (E − EF)

∂ E

)

, (7)

where summation is performed over all propagating modes α

for the spin σ, with Eσ
th α being the propagation threshold for

αth mode. The current density for the mode α is calculated
as [11]

J σ
α (y) = e2

h
V

∫

dE
jσ
α (y, E)

vσ
α

(

−∂ f (E − EF)

∂ E

)

, (8)

with vσ
α and jσ

α (y, E) being respectively the group velocity
and the quantum mechanical particle current density for the
state α at the energy E , and V being the applied voltage. All
the calculations presented in this paper are performed for the
temperature T = 1 K. In order to speed up the calculation
we use the modified Broyden method [24] that allows one to
reduce a number of iterations need to achieve a self-consistent
solution from ∼2000 to only ∼50.

2.2. Split-gate quantum wires

We consider a split-gate quantum wire depicted in figure 1(a).
To outline the role of the exchange and correlation interactions
we first study the magnetotransport in the quantum wire within
the Hartree approximation (i.e., when V σ

xc(y) = 0, and the spin
polarization is driven by Zeeman splitting of the energy levels).
In our calculations we use parameters of the quantum wire
indicated in figure 1. Figure 2(a) shows the one-dimensional
(1D) electron density nσ

1D for the spin-up and spin-down
electrons in the quantum wire (nσ

1D = ∫
nσ (y)dy). The

distinguished feature of this dependence is a 1/B-periodic,

loop-like pattern of the density spin polarization Pn = n↑
1D−n↓

1D

n↑
1D+n↓

1D

as illustrated in figure 2(b). Figure 2(c) also shows the effective
g factor. (We define the effective g factor according to geff =
〈(E↑

n,k − E↓
n,k)/gμB B〉 where the averaging is performed over

the all k vectors and the occupied subbands n).
Figure 2(a) shows the number of spin-resolved subbands

as a function of B. (Because the calculations are done for
the finite temperature T, for a given magnetic field we count
the subbands whose bottoms lie in the energy interval E �
EF + 4kT, where 4kT determines the energy window beyond
which the Fermi–Dirac distribution rapidly decays to zero).
The pronounced feature of this dependence is that the number
of subbands is always even, N = 2, 4, 6, . . ., such that the
spin-up and spin-down subbands depopulate simultaneously.
The spin polarization is apparently directly related to the
magnetosubband structure: the polarization drops almost to
zero at the magnetic fields when the subbands depopulate. In
order to understand the origin of the spin polarization let us
analyze the evolution of the subband structure as the applied
magnetic field varies. Let us concentrate on the polarization
loops in the field interval 1.3 T � B � 2.6 T when the number
of the spin-resolved subbands N = 4 and the filling factor in
the middle of the wire 2 � ν(0) � 4.

Figure 3(a) shows the filling factor νσ (y), current
densities J σ

α (n), and the magnetosubband structure for the
magnetic field B = 1.35 T. This field corresponds to the case
when the fifth and sixth spin-resolved subbands just became
depopulated, i.e. their bottoms are situated at �EF + 4kT .
The bottoms of third and fourth subbands are situated below
the Fermi energy and are fully populated. As a result, the
electron density is constant, which corresponds to a formation
of the incompressible strip. Because of the spin-up and spin-
down subbands are fully filled, the corresponding electron
densities are equal and the spin polarization of the electron
density is zero. When magnetic field is raised the subbands
are pushed up in the energy and the two highest spin-resolved
subbands, following Chklovslii et al scenario [6], become
pinned at the Fermi energy. The subband bottoms flatten which
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Figure 2. (a), (e) One-dimensional charge density for the spin-up and spin-down electrons, n↑
1D, n↓

1D and the number of occupied subbands N ;

(b), (f) spin polarization of the charge density, Pn = n↑
1D−n↓

1D

n↑
1D+n↓

1D

; (c), (g) the effective g factor, and (d), (h) the total and the spin-resolved

conductances. Parameters of the quantum wire are indicated in figure 1. Left and right panels correspond to the Hartree and DFT calculations.
The magnetosubband structure for the magnetic fields indicated by arrows in (b), (f) is shown in figure 3. (Figure is adapted from [11, 19].)

signals the formation of the compressible strip in the middle of
the wire, see figure 3(b). When the subband bottoms reach
the energy E ≈ EF − 4kT , the subbands become partially
occupied. The partial subband occupation combined with their
energy separation due to the Zeeman interaction results in a
different population for the spin-up and spin-down electrons.
With increase of the magnetic field the filling factor decreases,
but the spin polarization increases until the subband bottoms
approach ∼EF, figure 3 (c). This magnetic field corresponds to
the maximal spin polarization Pn ∼ 3%. With further increase
of the magnetic field, the subbands bottoms are pushed up
above EF, which causes further decrease of the filling factor
and diminishing screening efficiency. As the result, the width
of the compressible strip decreases until the upper subbands
become completely depopulated and the incompressible strip
forms again in the middle of the wire, see figure 3(d). This is
accompanied by a gradual decrease of the density polarization
Pn to zero.

The described above picture of evolution of the density
polarization qualitatively holds for all other polarization loops.

When magnetic field exceeds B = 2.6 T, only two subbands
survive in the quantum wire. With further increase of magnetic
field the upper (spin-up) subband gradually depopulates and
the density polarization Pn grows linearly until it reaches 100%
when only the spin-down subband remains in the wire.

As we mentioned before, the Hartree approximation
predicts that spin-up and spin-down subbands depopulate
simultaneously and thus the conductance drops in steps of
2e2/h as the magnetic field increases (figure 2(d)). This is
in strong disagreement with the experimental observations that
demonstrate that the subbands depopulate one by one such
that the conductance decreases in steps of e2/h. We will
show below that accounting for the exchange and correlation
interactions leads to qualitatively new features in the subband
structure and brings the theory to a close agreement with the
experiment.

Figures 2(e)–(h) and 3(e)–(h) shows the electron density,
conductance and subband structure for the quantum wire
calculated using the DFT within LDA. The main differences
in comparison to the case of spinless electrons (Hartree
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Figure 3. Upper panels: the local filling factor ν(y) = n(y)/nB, (nB = eB/h) for spin-up and spin-down electrons calculated in the Hartree
and DFT approximations for several representative magnetic fields (shown by arrows in figures 2(b) and (f)). Middle panels: the current
density distribution (in arbitrary units) for spin-up and spin-down electrons calculated according to equation (8). Lower panels:
magnetosubband structure for spin-up and spin-down electrons (solid and dashed lines correspondingly). Fat solid and dashed lines indicate
the total confining potential V σ (y) (equation (1)). The subband numbers N are indicated in the lower panel. (Figure is adapted from [11].)

approximation) can be summarized as follows. First, the
spin polarization Pn and the effective g factor show a
pronounced 1/B-periodic loop-like pattern which is an order of
magnitude higher in comparison to the Hartree approximation.
Second, the magnetosubbands depopulate one by one, and the
conductance decreases in steps of e2/h. Third, the outermost
edge states become spatially polarized (separated), which is
in the strong contrast with the Hartree approximation, where
they are situated practically at the same distance from the wire
boundary.

In order to understand the effect of the exchange–
correlation interactions on the energetics and the magnetosub-
band structure of the quantum wire, let us concentrate on the
same field interval as discussed in the case of the Hartree ap-
proximation. A comparison between figures 3(a)–(d) and (e)–
(h) demonstrates that evolution of the magnetosubband struc-
ture calculated within the DFT approximation follows the same
general pattern as for the case of the Hartree approximation.
In particular, a depopulation of the subbands starts from the
wire edges and the subbands remain pinned in the central re-
gion of the wire until they are eventually pushed up by mag-
netic field. The major difference from the Hartree case is that
Hartree subbands are practically degenerated and depopulate
together, whereas this degeneracy is lifted by the exchange in-
teraction such that the DFT subbands depopulate one by one.
This is because that in the compressible region the subbands
are only partially filled (because fFD < 1 in the window
|E − EF| � 2πkT ), and, therefore, the population of the spin-
up and spin-down subbands can be different (and can be easily
changed). In the DFT calculation, this population difference
(triggered by Zeeman splitting) is strongly enhanced by the ex-
change interaction leading to different effective potentials for
spin-up and spin-down electrons and eventually to the subband
spin splitting with the magnitude that can be comparable to the
Landau level spacing h̄ωc .

Let us now discuss the effect of the exchange interaction
on the structure of the edge states. At sufficiently high
magnetic field and for sufficiently smooth confining potentials
the compressible and incompressible strips start to form near
the wire boundaries. A quantitative analytical description of
the edge states in terms of the compressible and incompressible
strips was first given in the seminal papers of Chklovskii
et al [6], and a corresponding theory has been the basis
for understanding of various features of the magnetotransport
phenomena in the quantum Hall regime.

In order to outline the effect of the exchange interaction
on the structure of the compressible strips we first perform
calculations in the Hartree approximation (setting V σ

xc(y) = 0)
and, following Suzuki and Ando [25] compare them to
the predictions of Chklovskii et al [6]. According to the
Chklovskii et al theory [6] the width and position of the
compressible and incompressible strips are determined by
the filling factor ν(0) in the bulk (i.e. in the middle of
the wire, y = 0), and the depletion length l. Figure 4
shows the electron density profiles (the local filling factors)
ν(y) = n(y)/nB(nB = eB/h) and magnetosubband
structures for two representative values of the depletion lengths
l illustrating a formation of the compressible strips near the
wire edges. (Following Suzuki and Ando [25] we define
the width of the compressible strip wH

comp within the energy
window |E − EF| < 2πkT ; the depletion length l is extracted
from the calculated self-consistent density distribution by
fitting to the Chklovskii et al dependence [6] n(y) =
n(0)(

y−l
y+l )

1/2.) Our calculations reconfirm a good agreement
between the Chklovskii et al electrostatic theory and the
Hartree approximation demonstrated earlier by Suzuki and
Ando [25].

Let us now turn to the effect of the exchange interaction
on the structure of the compressible strips. Figure 4(a) shows
the electron density profiles ν(y) = n(y)/nB calculated in
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Figure 4. (a), (e) The electron density profile (the local filling factor)
ν(y) = n(y)/nB ; (b), (c), (f), (g) the magnetosubband structure and
(b), (f) the current density distribution (in arbitrary units) in wires the
depletion lengths l = 20 and 40 nm (left and right columns
respectively) calculated in the Hartree and the DFT approximations.
Fat solid and dashed lines show the total confining potentials for
spin-up and spin-down electrons (equation (1)). The subband
numbers N are indicated in the lower panel. Parameters of the wires:
V0 = −0.2 eV; h̄ω0 = 3 meV, 1 meV (first and second columns
respectively). The corresponding magnetic fields are B ≈ 5.9 T,
4.9 T; and the electron density n(0) ≈ (3, 2.5) × 1015 m−2. T = 1 K,
EF = 0. (Figure is adapted from [12].)

the Hartree and DFT approaches for a representative filling
factor ν(0) ≈ 2.2. As expected, the density profiles are
very similar, whereas the corresponding subband structures
are strikingly different. In the Hartree approximation the
spin degenerate N = 1, 2 subbands form a compressible
strip of the width wH

comp, see figure 4(b). Figures 4(c)
and (g) show corresponding subband structure in the DFT
approximation, where exchange interaction lifts the spin
degeneracy by pushing the spin-up and spin-down subbands
respectively below and above the Fermi energy. As a result,
the compressible region (present in the Hartree approximation)
is suppressed and the spin-up and spin-down states become
spatially separated by the distance dsep ≈ wH

comp. This is
illustrated in figures 4(d), (h) which show the current densities
for the outermost spin-up and spin-down channels, peaked at
the positions where the corresponding spin-up and spin-down
subbands intersect the Fermi energy. (The current densities
in the Hartree approximation are practically degenerate and
delocalized within the whole extension of the compressible
strip.)

The scenario of the suppression of the compressible strips
described above holds also for larger l and B , with one
new important feature. According to electrostatic description
of Chklovskii et al [6], the compressible strips are more
easily formed in a structure with larger depletion length l
(i.e. with more smooth confinement), which is confirmed
experimentally [26]. This feature is clearly manifest in the
Hartree calculations, figures 4(b) and (f), where the width of
the compressible strip grows as l is increased. When l is
small as in figure 4(c), the exchange interaction completely
suppresses the compressible strip and the spin-up and spin-
down spin channels becomes spatially separated with dsep ≈
wH

comp as described above. For larger l the compressible strip
of the width w↓DFT

comp starts to form for the spin-down subband
(figure 4(f)), such that dsep + w↓DFT

comp ≈ wH
comp, see figure 4(f).

With further increase of the depletion length l the compressible
strip of the width w↑DFT

comp starts to form also for the spin-up edge
channels.

The above analysis demonstrates that the exchange
interaction suppresses formation of the compressible strips and
leads to a spatial separation between the spin-up and spin-
down states. This conclusion, outlining the importance of
the exchange interaction, represents a significant departure
from the conventional spinless Chklovskii et al picture of
edge states [6] widely used for analysis of magnetotransport
experiments in the edge state regime. It should be noted that
the exchange interaction in a qualitatively similar way affects
the edge states around quantum antidots leading to the spatial
separation between the spin-up and spin-down states [14].
There are however, important differences between the structure
of the edge states in the quantum wires and the antidots.
This difference is due to an enhanced screening in the antidot
structures, which is discussed in detail in [14].

Finally, it is worth mentioning that we have recently
performed a detailed comparison of the self-consistent
calculations based on the Hartree–Fock and the spin density
functional theory for a split-gate quantum wire in the
integer quantum Hall regime [19]. We demonstrated that
these approaches provide qualitatively (and in most cases
quantitatively) same description of a split-gate quantum wire.
This includes the electron density, spin polarization and
the effective g factor. Both approaches give the same
values of the magnetic fields corresponding to the successive
subband depopulation and qualitatively similar evolution of the
magnetosubbands. Quantitatively, however, the HF and the
DFT subbands are different (even though the corresponding
total electron densities are practically the same). In contrast
to the HF approach, the DFT calculations predict much larger
spatial spin separation near the wire edge for the low fields
(when the compressible strips for spinless electrons are not
formed yet).

2.3. Cleaved-edge overgrown quantum wires

Recent advances in fabrication of low dimensional structures
allow one to create quantum wires with a hard wall potential
confinement. One of the most widely used techniques for
fabrication of quantum wires with such the confinement is the
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Figure 5. (a) One-dimensional charge density for the spin-up and spin-down electrons, n↑
1D, n↓

1D, and the number of occupied subbands N in

a cleaved-edge overgrown quantum wire calculated in the DFT approximation; (b) the spin polarization of the charge density, Pn = n↑
1D−n↓

1D

n↑
1D+n↓

1D

.

Arrows in (b) indicate the magnetic field corresponding to the magnetosubband structure shown in figures (c) and (d). (c), (d) The subband
structure for magnetic fields indicated by arrows in (b). Upper panels: electron density profiles (local filling factors) ν(y) = n(y)/n B for
spin-up and spin-down electrons; middle panels: the current density distribution for spin-up and spin-down electrons; lower panels:
magnetosubband structure for spin-up and spin-down electrons. Fat solid and dashed lines indicate the total confining potential for respectively
spin-up and spin-down electrons (equation (1)). The parameters of the wire are indicated in figure 1. (Figure is adapted from [13].)

molecular beam epitaxy double-growth technique [27]. The
technique of the cleaved-edge overgrowth was extensively used
to design samples with a tunnel probe in direct contact with
the edge of a two-dimensional electron system (2DES) (for a
review see e.g. [28]).

Recent experiments indicate that the standard description
of the edge states developed for the quantum wires with a
smooth confinement based on the concept of compressible and
incompressible strips does not apply to the case of a sharp-
edged 2DEG [29]. At the same time a rigorous theory for
the edge state structure in hard wall quantum wires accounting
for electron–electron interaction and spin effects has not been
reported until recently. In this section we provide a brief
account of the structure of the edge states and magnetosubband
evolution in hard wall quantum wires in the integer quantum
Hall regime calculated on the basis of the self-consistent
Green’s function technique where the electron interaction and
spin effects are included within the density functional theory in
the local spin density approximation [13].

We consider a quantum wire which is infinitely long
in the x-direction and is confined by a hard wall potential
in the y-direction, see figure 1(b). The Hamiltonian and
details of calculation are described in section 2.1. Figure 5
shows the electron density and density spin polarization Pn

as a function of magnetic field as well as evolution of the
magnetosubband structure calculated within the spin-DFT
approach. There is a certain similarity in the behavior of Pn as
well as in overall evolution of the magnetosubband structure in
comparison to the case of a split-gate quantum wire. However,

in contrast to the wires with a smooth confinement, the
spin polarization of the electron density in the cleaved-edge
overgrown wires shows a pronounced double-loop pattern (in
contrast to the single loop pattern in the wires with a smooth
confinement, cf figure 2(b)). The magnetosubband structure
and the density distribution in the hard wall quantum wire is
qualitatively different from that one with a smooth electrostatic
confinement. In particular, in the hard wall wire a deep
triangular potential well of the width ∼lB (with lB being the
magnetic length) is formed in the vicinity of the wire boundary.
The wavefunctions are strongly localized in this well which
leads to the increase of the electron density near the edges.

Because of a presence of the deep triangular well near
the wire boundaries, the subbands start to depopulate from
the central region of the wire and remain pinned in the well
region until they are eventually pushed up by an increasing
magnetic field. This is illustrated in figures 5(c)–(e) showing
depopulations of subbands N = 2, 3. This character of the
subband depopulation is different from the case of a smooth
confinement where depopulation of the subbands starts from
the edges and extends towards the wire center as the magnetic
field increases. A pronounced double-loop pattern of Pn can be
traced to the successive depopulation of the magnetosubbands,
where the second loop feature is related to the presence of the
well near the edge.

Finally, in contrast to the case of a smooth confinement,
in the hard wall wires the compressible strips do not form in
the vicinity of wire boundaries and a spatial spin separation
between spin-up and spin-down states near the edges is absent.
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3. Conductance of quantum point contacts and
open dots

3.1. Model and method

We consider an open structure (e.g. a quantum point contact
(QPC) or a quantum dot) placed between two semi-infinite
electron reservoirs [16–18]. A schematic layout of the
device is illustrated in figure 6. Charge carriers originating
from a fully ionized donor layer form the two-dimensional
electron gas (2DEG) which is buried inside a substrate at
the GaAs/Alx Ga1−x As heterointerface at the distance b from
the surface. Metallic gates are situated on the top of the
heterostructure and define a central (device) region as well as
electron reservoirs that are represented by uniform quantum
wires of the infinite length.

The Hamiltonian of the whole system (the internal
region + the semi-infinite leads) within the Kohn–Sham
formalism can be written in the form H = ∑

σ H σ , [16–18]

H σ = − h̄2

2m∗ ∇2 + V σ (r), (9)

r = (x, y), m∗ = 0.067me is the GaAs effective mass and σ

stands for spin-up, ↑, and spin-down, ↓, electrons. The first
term in (1) is the kinetic energy of an electron while V σ (r) =
Vconf(r)+ VH(r)+ V σ

xc(r) is the total confining potential which
is a sum of the electrostatic confinement potential, the Hartree
potential, and the exchange–correlation potential, respectively.
The electrostatic confinement Vconf(r) = Vgates(r) + Vdonors +
VSchottky includes contributions from the top gates, the donor
layer and the Schottky barrier. The explicit expressions for the
potentials Vgates(r) and Vdonors are given in [9, 10]; the Schottky
barrier is chosen to be VSchottky = 0.8 eV. The Hartree potential
is written in a standard form [8]

VH(r) = e2

4πε0εr

∫

dr ′n(r′)

(
1

|r − r′|−
1

√|r − r′|2 + 4b2

)

,

where n(r) = ∑
σ nσ (r) is the total electron density and the

second term describes the mirror charges placed at the distance
b from the surface, εr = 12.9 is the dielectric constant of
GaAs, and the integration is performed over the whole device
area including the semi-infinite leads.

The exchange–correlation potential V σ
xc(r) in the local spin

density approximation is given by the functional derivative [8]
equation (4). For the exchange and correlation energy
functional εxc we have employed two commonly used
parameterizations, by Tanatar and Ceperley [20] and by
Attacalite et al [21]. These two parameterizations give very
similar results. All the results presented below correspond to
the parametrization of Tanatar and Ceperley [20].

The central quantity in transport calculations is the
conductance. In the linear response regime, it is given by the
Landauer formula G = ∑

σ Gσ , [22]

Gσ = −e2

h

∫

dE T σ (E)
∂ f (E − EF)

∂ E
, (10)

where T σ (E) is the total transmission coefficient for the spin
channel σ , f (E − EF) is the Fermi–Dirac distribution function

GaAs

2DEG

    +  computational region  +

gates

semi-infinite
lead 

semi-infinite
lead 

internal 

Figure 6. Schematic geometry of an open structure. The internal
region is attached to two semi-infinite quantum wires which serve as
the electron reservoirs. Metallic gates on the top of the structure
defines electrostatic confinement.

and EF is the Fermi energy. The main steps of calculations of
T σ (E) are briefly presented below (see [16, 17] for details).

We discretize equation (1) and introduce the tight-binding
Hamiltonian where the lattice constant is chosen to be
sufficiently small to ensure that the tight-binding Hamiltonian
is equivalent to the continuous Schrödinger equation. The
retarded Green’s function is introduced in a standard way [22],

Gσ = (E − H σ + iη)
−1

. (11)

The Green’s function in the real space representation,
Gσ (r, r, E), provides an information about the electron density
at the site r, [22]

nσ (r) = − 1

π
Im

∫

dE Gσ (r, r, E) f (E − EF). (12)

Note that Gσ (r, r, E) is a rapidly varying function of energy.
As a result, a direct integration along the real axis in
equation (12) is rather ineffective as its numerical accuracy is
not sufficient to achieve a convergence of the self-consistent
electron density. Because of this, we transform the integration
contour into the complex plane Im[E] > 0, where the Green’s
function is much more smoother (see [16] for details).

In order to calculate the Green’s function of the whole
system we divide it into three parts, an internal region and
two semi-infinite leads, as shown in figure 6. The internal
region consists of the device region as well as a part of the
leads. In order to link the internal region and the leads
together the self-consistent charge density (and the potential)
at both sides must be the same. To fulfill this requirement,
we place the semi-infinite leads far away from the central
region so that the gates defining the device do not affect the
electron density distribution in the leads. As a result, it is fully
justified to approximate the semi-infinite leads by an uniform
quantum wire. The self-consistent solution for the latter can
be found by the technique developed in [11] and described
in section 2.1. Eventually, the Green’s function of the whole
system is calculated by linking the surface Green’s function for
the semi-infinite leads (calculated using the technique of [11])
and the Green’s function of the internal region with the help of
the Dyson equation [30].

All the calculations described above are performed self-
consistently in an iterative way until a converged solution for
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Figure 7. (a) Schematic geometry of the gates that form a
constriction of length l and width w; conductance of the quantum
point contact of the length (b) l = 50 nm and (c) l = 300 nm as a
function of the gate voltage Vg. The geometrical width of the
constriction is w = 100 nm. The dashed line corresponds to the
spin-unpolarized solution. Parameters of the QPC are as follows: The
2DEG is buried at b = 70 nm below the surface (the widths of the
cap, donor and spacer layers are 24, 36 and 10 nm respectively), the
donor concentration is 0.6 × 1024 m−3. The width of the semi-infinite
leads is wlead = 400 nm, T = 0.2 K. (Figure is adapted from [17].)

the electron density and potential (and hence for the total
Green’s function) is obtained. Having calculated the total self-
consistent Green’s function, the scattering problem is solved
using the standard Green’s function technique in magnetic
field [30].

The self-consistent solution in quantum transport or
electronic structure calculations is often found using a ‘simple
mixing’ method. It is the most robust and reliable algorithm
with only one disadvantage, namely a low convergence rate.
The charge density on the (i + 1)-th iteration loop is updated
through the input nin

i (r) and output nout
i (r) densities on the

previous i th iteration

nin
i+1(r) = (1 − ε)nin

i (r) + εnout
i (r), (13)

with ε being a small constant ∼0.1–0.01. It is typically needed
∼200–2000 iteration steps to achieve our convergence criterion
for the relative density update on the i th iteration step,

|nout
i − nin

i |
nout

i + nin
i

< 10−7, (14)

where n = ∫
n(r) dr is the total electron number in the internal

region during the i th iteration step.

The self-consistent calculation are performed for different
gate voltages. To facilitate the calculations we use a solution
from the previous value of the gate voltage as an initial guess
for the subsequent one. It is worth noting that the modified
Broyden’s second method [24], which can greatly reduce a
number of iterations for the case of spinless electrons, does not
always lead to reliable convergent results in the presence of the
spin degree of freedom (i.e. for the case of the QPC addressed
in section 3.2).

Finally, a comment is in order concerning an applicability
of the developed method. The conductance calculations
in open structures presented in this paper are based on an
approach that during recent years became a standard tool for
transport ab initio calculations in molecular junctions, atomic
wires and related systems [31–37]. Its starting point is the
Landauer-type formula where the conductance is calculated
using the nonequilibrium Green function technique (NGFT) or
similar methods combined with the density functional theory
in the local density approximation. The formal justification
of this approach is given in [34, 38–40]. This approach
has witnessed a great success in reproducing observed I –V
characteristics of molecular and metallic junctions, notably
in the strong coupling limit (when the conductance exceeds
the conductance unit G0 = 2e2/h). At the same time,
for weakly coupled systems such as organic molecules the
standard NGFT + DFT approach leads to the orders-of-
magnitude discrepancy between the measured and calculated
currents and to incorrect predictions of the conducting (instead
of experimentally observed insulating) phase [34–37]. It has
been recently recognized that the failure of this approach
in the weak coupling regime can be traced to spurious
self-interaction errors caused by the lack of the derivative
discontinuity of the exchange and correlation potential in
the standard DFT [5, 34–37]. It has been demonstrated
recently that elimination of the self-interactions errors and
restoring agreement with the experiment for the case of
the weak coupling requires approaches and the exchange
and correlation functionals that go beyond the standard
NGFT + DFT scheme [34–37]. Because of this our present
mean-field approach is not expected to work for the case
of the weak coupling (i.e. in the Coulomb blockade regime
when the conductance of each QPC connecting the dot to the
reservoirs is reduced below the conductance unit G0), and its
applicability is limited to the case of open structures when
the electron number in the device is not quantized and the
Coulomb charging is unimportant.

3.2. Quantum point contact

In this section we discuss a conductance of split-gate QPCs
with parameters representative for a typical experimental
structure, see figure 7(a). Figures 7(b) and (c) show the
conductance of the QPCs with the constriction lengths l =
50 nm (a very short QPC) and l = 300 nm (a long quantum
wire-type QPC) [17]. The conductance of the QPCs shows
a broad plateau-like feature at 0.5 × 2e2/h. As the length
of the constriction increases, a dip following the 0.5-plateau
starts to develop in the QPC conductance. An inspection of
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Figure 8. Evolution of quasi-bound states in the quantum point
contact for different temperatures and gate voltages. The charge
density and the local density of states in the QPC at the gate voltages
as indicated in the conductance plot in the inset (note the log scale of
the conductance). Parameters of the QPC are as follows: The length
of the constriction is l = 100 nm, the width of the constriction is
w = 100 nm, the 2DEG is buried at b = 70 nm below the surface
(the widths of the cap, donor and spacer layers are 24, 36 and 10 nm
respectively), the donor concentration is 0.6 × 1024 m−3. The width
of the semi-infinite leads is wlead = 500 nm, T = 0.2, 4.2 and 10 K.

the spin-resolved conductance demonstrates that the 0.5 feature
corresponds to the transmission of only one spin channel
(say, spin-up), whereas the second (spin-down) conductance
channel is totally suppressed. For long constrictions (l �
300 nm) the 0.5 plateau starts to ‘wear down’ transforming into
a broad feature whose maximal amplitude is less than 0.5 ×
2e2/h. If the constriction is sufficiently long (l � 100 nm), a
conductance plateau at ∼ 1.5 × 2e2/h starts to develop and a
conductance dip following the 1.5-plateau also starts to emerge
as the length of the constriction increases. We stress that these
results are generic; we studied QPCs with lengths in the range
40–500 nm and electron densities in the leads in the range
1015–4 × 1015 m−2, with very similar results [17].

To shed light on a microscopic origin of the 0.5 × 2e2/h
conductance feature and the suppression of the spin-down

Figure 9. Formation of the quasi-bound states in a long QPC. The
top panel shows the electron densities in the QPC revealing a
formation of spin-polarized charge droplets resembling the spin
density waves. The bottom panel shows the local density of states.
The white dashed lines indicate the total effective potential along the
QPC. Parameters of the QPC are as follows: the length of the
constriction is l = 500 nm, the width of the constriction is
w = 100 nm, the 2DEG is buried at b = 70 nm below the surface
(the widths of the cap, donor and spacer layers are 24, 36 and 10 nm
respectively), the donor concentration is 0.6 × 1024 m−3. The width
of the semi-infinite leads is wlead = 400 nm, T = 0.2 K.

channel let us inspect the charge density and the local density
of states (LDOS) of the QPC. Figure 8 shows the charge
densities and the LDOS in the QPC close to the pinch-off
regime and for the case of one transmitted spin-up, G↑ =
e2/h, and a totally blocked spin-down, G↓ = 0, channel.
Already in the pinch-off regime, two spin-polarized quasi-
bound states are developed at both sides of the constriction.
The quasi-bound states are not spatially fixed but gradually
move towards each other and eventually merge during the
sweep of the gate voltage Vg. Our conclusions concerning the
spin polarization in the constriction are consistent with earlier
findings based on the spin-DFT calculations [41–45]. The
features of the evolution and formation of the localized spin-
polarized quasi-bound states in the QPC agree well with the
results reported by Hirose et al [45] and Rejec and Meir [46].
The spin polarization is caused by the exchange interaction
which dominates the kinetic energy for low densities. The
quasi-bound states for corresponding droplets can also be
traced in the LDOS, see figure 8. It is interesting to note that
the spin polarization survives up to temperatures ∼6–8 K and
becomes quenched around T ∼ 10 K. The spin polarization
leads to the spatial separation between spin-up and spin-
down states. This is reflected in the shape of the total
confining potential for the spin-down electrons that forms a
wide tunneling barrier, see figure 8. Because of this barrier,
the transmission probability for the spin-down conductance is
negligibly small, whereas the second (spin-up) channel can be
completely transmitted leading to the conductance G ≈ 0.5 ×
2e2/h. In the case of a long, quantum wire-type constriction,
the electron density show a signature of formation of the spin
density waves, with spatially separated spin-up and spin-down
quasi-bound states, see figure 9.
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Let us now compare the spin-DFT-based conductance
calculations reported above with the experimental conductance
of the QPC structures. The common feature of the calculated
conductance is the pronounced plateau-like feature at ∼0.5 ×
2e2/h for all QPC structures studied (both short and long
ones). For longer QPCs (l � 150 nm), a dip following
0.5-plateau starts to develop in the conductance. On the
contrary, the experimental data clearly show an anomaly in the
conductance around 0.7×2e2/h [47–50]. (It should be stressed
that the calculated 0.5 plateau corresponds to the complete
suppression of one spin channel, whereas experimentally
observed 0.7-anomaly means that both spin channels have to
be present in the conductance [50].) The above comparison
demonstrates that while the spin-DFT-based ‘first-principle’
calculations predict the spin polarization in the QPC structure,
the calculated conductance clearly does not reproduce the 0.7-
anomaly observed in almost all QPCs of various geometries.

In order to understand why the calculated conductance
fails to reproduce the 0.7-anomaly, let us critically analyze the
major features of the DFT-based conductance calculations. We
focus below on several aspects of the DFT approach that seem
to be the most important for understanding of the discrepancy
between the calculations and the experiment.

The question concerning the validity of the DFT
approach relies on a proper description of the exchange and
correlation within the DFT approximation. The exchange
and correlations are commonly accounted for within the
local spin density approximation [8] using two popular
parameterizations, namely the parametrization of Tanatar and
Ceperley [20] and Attacalite et al [21]. The validity of
these approximations has been tested for few-electron quantum
dot systems and, generally, a very good agreement with
the exact diagonalization and/or variational Monte Carlo
calculations was found [51]. Taking into account that these
parameterizations give practically the same results for the QPC
conductance, we do not expect the utilization of the above
parameterizations to be a source of a significant discrepancy
between the calculated conductance and the experiment.
Instead, we focus on another aspect of the choice of the
exchange energy functional which arises in the systems with
a variable particle number. (Note that the QPC structure, being
an essentially open structure, belongs to this class of systems.)
As we mention in the previous section, the developed method
is not expected to work for the systems when transport is
mediated by weakly coupled quasi-bound states. This aspect
is related to the infamous ‘derivative discontinuity problem’
of the DFT originating from the discontinuous dependence of
Vxc on the particle number [8]. (Note that the LDA does not
include any derivative discontinuity in the Vxc.) Several recent
studies have identified the lack of the derivative discontinuity
in LDA as a major source of error in the DFT-based transport
calculations [35, 36] in atomic systems. For example, Toher
et al [35] argued that LDA approximation is not suitable for
transport calculations for the case of weak coupling. Note that
various approaches to the description of quantum transport for
the case of weakly coupled systems (accounting for the charge
quantization and thus eliminating the self-interaction errors)
were discussed in [34] and [37].

We argue here that a similar problem related to the
derivative discontinuity may be the reason why the standard
DFT + LDA approach fails to describe the observed 0.7-
anomaly in the QPC. Indeed, the formation of the spin-
polarized charge droplet predicted by the DFT + LDA
approach implies that electrons are trapped in weakly coupled
quasi-bound states in the center of the QPC. As mentioned
above, in the case of weak coupling the lack of the derivative
discontinuity in the LDA approximation causes the orders-of-
magnitude discrepancies between the theory and experiment
for the molecular systems. Thus, one can expect that due to
the same reason the LDA approximation is not suitable for
the case of the QPC structure as well. Because the corrective
schemes accounting for the derivative discontinuity are shown
to strongly affect the electron density and the energy levels
in the system [35], and because of the apparent failure of the
standard DFT + LDA approach to reproduce the 0.7-anomaly,
we conclude that the formation of the magnetic impurities in
the QPC might be an artifact of the LDA due to the lack
of the derivative discontinuity related to the spurious self-
interaction. As an indirect support of the above arguments
we notice that similar spin-DFT conductance calculations
(within the same LDA approach and the same parametrization
of Vxc) reproduce quantitatively the measured spin-resolved
magnetoconductance of the QPCs in the integer quantum Hall
regime [52]. In this case the edge state regime is reached such
that the transport through the QPC corresponds to the strong
coupling regime (G0 > 1).

Another reason for the above discrepancy can be
related to the fact that the DFT + LDA approximation might
overestimate the spatial spin polarization near the smooth
boundaries. Indeed, as we mentioned in section 2.2, the
comparison of the DFT and the Hartree–Fock approaches
shows that these two methods provide qualitatively (and in
most cases quantitatively) same description of a split-gate
quantum wire in the IQH regime. The most significant
difference is that the DFT approximation predicts much larger
spatial spin polarization near smooth boundaries at lower fields
(including B = 0). Note that a comparative study [19] can
not distinguish which approach gives a correct result. This
question can be resolved by a comparison to the exact results
obtained by e.g. quantum Monte Carlo methods. We speculate
at this point that it is the DFT approach that overestimates
the spatial spin separation at lower fields. This conclusion
is based on the transport measurements on lateral quantum
dots indicating that the spin-polarized injection and detection
by means of the spatial separation of spins can be achieved
only in the edge state regime for a sufficiently high magnetic
field [4]. For the case of a QPC, the 0.5-feature in the
calculated conductance (instead of the 0.7-feature observed in
the experiment), is a direct consequence of the strong spatial
spin polarization when one of the spin channels is completely
‘repelled’ from the interior of the QPC.

Based on the above discussion we conclude that while
the DFT approach qualitatively captures the spontaneous
spin polarization in the QPC, it however fails to reproduce
quantitatively the experimentally observed 0.7-anomaly. Close
to the pinch-off regime, the DFT approach predicts formation
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of the spin-polarized bound states on the sides of the
constriction rather than on the QPC center. Such bound states
might be relevant to the experimental observation of Bird
et al suggesting the resonance interaction between the coupled
quantum point contacts close to the pinch-off regime [53]. In
light of the above mentioned deficiencies of the DFT approach,
it is nor clear however to what extend one can rely on the above
predictions for explanations of the experimental data. We hope
that our critical analysis of the standard DFT approach will
stimulate further theoretical efforts that go beyond the standard
DFT + LDA schemes.

3.3. Open dots

A transport regime where a sub-micron lateral structure is
strongly coupled to electron reservoirs (leads) is usually
referred to as an open one. This transport regime can
be realized in quantum wires, dot and antidot structures
typically fabricated using a split-gate or related techniques.
The quantum dot operates in an open regime when the gate
voltage sets up two quantum point contacts (QPCs) at the
entrance and exit of the dot such that they transmit one or
more channels (i.e. the conductance of an individual QPC
exceeds the conductance unit GQPC � G0 = 2e2

h ). In this
regime electrons can freely enter and exit the dot, such that
the electron number inside the dot is not integer. (Opposite
regime of the Coulomb blockade corresponding to the integer
electron number in the dot emerges when the point contacts are
nearly pinched off). During the last decade the open quantum
dots have received a significant attention providing many
important insights into areas such as quantum interference,
chaos, decoherence, localization and many others [54].

It is widely believed that in open transport regime as
opposed to the Coulomb blockade [1] or Kondo regime [2], the
electron–electron interaction plays only a minor role. We have
recently revised the role of the electron–electron interaction
in transport properties of open quantum dots [16, 18].
In particular, we revealed a pronounced effect of pinning
of the resonant levels to the Fermi energy due to the
enhanced screening. Our results represent a significant
departure from a conventional picture adopted in most model
Hamiltonians as well as in more sophisticated numerical
calculations where a variation of external parameters (such
as a gate voltage, magnetic field, etc) causes the successive
dot states to sweep past the Fermi level in a linear fashion.
We instead demonstrate highly nonlinear behavior of the
resonant levels in the vicinity of the Fermi energy. One
of the observable consequence of this effect is smearing
of the conductance fluctuations. Our findings question
a conventional interpretation of the ultralow temperature
saturation of the coherence time in open dots which is
based on the noninteracting theories where the agreement
with the experiment is achieved by introducing additional
phenomenological channels of dephasing. We also show that
the resonant level pinning becomes especially pronounced
in magnetic field. Thus, accounting for this effect might
be important for the interpretation of the magnetotransport
experiment in open structures, including e.g. recent studies

of the electronic Mach–Zehnder interferometer [55] and
the Laughlin quasi-particle interferometer [56], structures
designed to test the realization of the topological quantum
computing [57], antidot structures [58–60] and others. We
consider an open quantum dot (figure 6) with parameters close
to those studied experimentally by Huibers et al [61]. We
consider the spinless electrons because in relatively large dots
as those studied here the electrons are spin degenerate [62, 63].
We also neglect the exchange and correlation effects, which
have been shown to affect the calculated conductance only
marginally [16] (i.e. our calculations corresponds to the
Hartree approximation).

To outline the role of quantum mechanical effects in
the electron–electron interaction in open quantum dots we
also consider the Thomas–Fermi (TF) approximation. In this
approximation the kinetic energy is related to the electron
density [8], H0 = π h̄2

m∗ n(r). The self-consistent electron
density is thus obtained from the solution of the equation

π h̄2

m∗ n(x, y) + Vconf(r) + VH(r) = EF. (15)

The electron density and the total confining potential
calculated within the TF approximation do not capture
quantum mechanical quantization of the electron motion. The
utilization of the TF approximation for the modeling of the
magnetotransport in open system is therefore conceptually
equivalent to a one-electron approach. The difference between
these approaches is the shape of the total confining potential:
in one-electron transport simulations one typically starts with
a model hard wall confinement, whereas the TF approximation
gives a rather smooth potential which represents a good
approximation to the actual confinement.

Figure 10(a) shows the conductance of the open
quantum dot calculated in the Hartree and TF approximations
(interacting and noninteracting electrons respectively) for T =
50 mK [18]. All the results discussed in this paper correspond
to one propagating mode in the quantum point contact (QPC)
openings. The striking difference between the conductance
curves is clearly manifested in a strong suppression of the high
frequency components of the oscillations for the interacting
electrons in comparison to the noninteracting case. Thus,
the electron interaction causes an apparent smearing of the
conductance oscillations, which is similar to the effect of
the temperature or inelastic scattering. This smearing of
oscillations is caused by the pinning of resonant levels to
the Fermi energy in the vicinity of resonances [16]. This is
illustrated in figure 11(b) which shows an evolution of the peak
position of the resonant energy levels. In the vicinity of the
resonances the DOS of the dot is enhanced such that electrons
with the energies close to EF can easily screen the external
potential. This leads to the ‘metallic’ behavior of the system
when the electron density in the dot can be easily redistributed
to keep the potential constant. As a result, in the vicinity of
a resonance the system only weakly responds to the external
perturbation (such as change of a gate voltage, magnetic field,
etc), i.e. the resonant levels becomes pinned to the Fermi
energy (see [16] for a detailed discussion of the pinning effect).
For noninteracting electrons the nonlinear screening and hence
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Figure 10. The calculated conductance of the open quantum dot for interacting (Hartree) and noninteracting (TF) electrons as a function of
the gate voltage Vg for (a) T = 50 mK and (c) T = 300 mK; B = 20 mT. (The conductance curves for interacting electrons are shifted by
e2/h.) Probability distribution of the conductance P(G) for interacting and noninteracting electrons for (b) T = 50 mK and (d) T = 300 mK
for the cases of the time-reversed symmetry (β = 1) and the broken time-reversed symmetry (β = 2). The experimental data is adapted
from [61]. Solid lines in (b), (d) correspond to the predictions of the RMT (T = 0, no dephasing). The layout of the gates defining the dot is
similar to that one shown in figure 6. The geometrical size of the dot is 660 nm × 520 nm, the width of the leads is 540 nm. The width of the
quantum point contact (QPC) openings is 100 nm (which corresponds to one propagating mode). The widths of the cap, donor and spacer
layers are 14, 36 and 10 nm respectively, the donor concentration is 0.6 × 1024 m−3. (Figure is adapted from [18].)

the pinning effect are absent, such that the successive dot states
sweep past the Fermi level in a linear fashion, see figure 11(c).

The pinning of resonant levels drastically affects the con-
ductance probability distribution P(G). Figure 10(b) shows
P(G) calculated for interacting and noninteracting electrons
for the cases of a time-reversal symmetry, β = 1 (B = 0)
and a broken time-reversal symmetry, β = 2, (B �= 0) for
T = 50 mK [18]. The time-reversal symmetry is broken by
application of a magnetic field B � φ0/A, where φ0 = h/e
is the flux quantum and A is the effective dot area (typically,
B ∼ 20–40 mT). Figure 10(b) shows that the statistics of the
conductance distribution P(G) for the case of noninteracting
electrons closely follow the corresponding random matrix the-
ory (RMT) predictions for τϕ = 0 and T = 0 [54, 64] both for
β = 1 and 2. At the same time, the statistics for the interacting
electrons are strikingly different from those for the noninteract-
ing case. Thus, due to the effect of the electron interaction, the
ultralow temperature statistics of the conductance oscillations
of quantum dots are not described by the RMT.

As the temperature increases, the difference between
the conductances G = G(Vg) as well as between the
corresponding conductance distributions P(G) for interacting
and noninteracting electrons diminishes, and for a sufficiently
high temperature this difference disappears, see figures 10
(c) and (d) (T = 300 mK). The reason for that is that
the temperature strongly reduces the effect of resonant level

pinning. Indeed, when the transport energy window, ∼2πkBT ,
(determined by the condition when the derivative of the Fermi–
Dirac distribution is distinct from zero exceeds the mean-level
spacing � = 2π h̄2

m∗A ), the conductance is mediated by several
levels. As a result, several levels always contribute to screening
at the same time and hence the screening efficiency of the
dot is affected very little when a gate voltage or magnetic
field are varied. Note that for the dot under consideration
the condition 2πkBT = � corresponds to T ≈ 100 mK.
Thus, for 2πkBT � � the effect of the electron interaction
on the conductance is strongly suppressed, and therefore the
conductance and their probability distributions for interacting
and noninteracting electrons are practically the same.

The probability distribution P(G) in open quantum dots
with one propagating channel in the leads was studied by
Huiberts et al [61]. Figure 10(b) shows that in the regime
of the ultralow temperatures, T = 50 mK, the calculated
conductance statistics for interacting electrons agree quite
well with the corresponding experimental distribution P(G)

both for β = 1 and 2. The measured conductance
distribution P(G) in [61] was well described by the RMT
predictions where the inelastic scattering was introduced
using τϕ as a fitting parameter. Our results, instead,
demonstrate that once the electron interaction is accounted
for, the agreement with the experiment for 2πkBT � �

is achieved without assuming additional inelastic scattering
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Figure 11. The conductance (a) and the resonant energy structure of
the open quantum dot calculated within the Hartree (b) and
Thomas–Fermi approximations (c) (interacting and noninteracting
electrons respectively). Inset in (b) shows the density of states (DOS)
for Vg = −0.5 V. The layout of the gates and parameters of the
heterostructure are similar to those of figure 10; T = 0.2 K. (Figure
is adapted from [16]).

channels. We thus conclude that for the regime of ultralow
temperatures the experimentally inferred value of τϕ might
be greatly underestimated which implies that the dephasing
time does not saturate. As the temperature increases, the
calculated conductance distribution starts to deviate from the
experimental statistics, see figure 10(d). As discussed above,
for the temperature 2πkBT � � the electron interaction
practically does not affect the conductance oscillations and
their statistics. Thus, for 2πkBT � � the difference between
the calculated and experimental statistics can be attributed
to the effect of dephasing. Our criterion for the transition
temperature 2πkBT ∼ � is consistent with the findings
reported by Bird et al [65, 66] and Clarke et al [67] who find a
saturation behavior of τϕ at the transition temperatures Tonset

near the mean-level spacing. A relation between Tonset and
� was also discussed by Hackens et al [68]. However, some
experiments [69] do not show a clear relation between Tonset

and �, such that more systematic studies are needed in order
to prove the connection between Tonset and �.

Pinning of the resonant levels in open dots discussed above
becomes much more pronounced in sufficiently high magnetic
field when the electron transport is mediated by the edge states
with a characteristic dimension of the order of the magnetic
length lB = √

h̄/eB. In the edge state transport regime
the backscattering on the potential defining the quantum dot
decreases and, for a large enough B , electrons pass through
the device with the transmission close to unity. Transport in
such a regime is referred to as adiabatic. For the open quantum
dot under study, transition to adiabatic propagation takes place
at about B ≈ 0.5 T, see figure 12(a). The conductance for

Figure 12. (a) The conductance of the open quantum dot as a
function of the magnetic field B and gate voltage Vg calculated
within the Hartree approximation. (b) The energy structure for
B = 0.5 T calculated within the Hartree approximation. The layout
of the gates and parameters of the heterostructure are similar to those
of figure 10; T = 0.2 K. (Figure is adapted from [16].)

B � 0.5 T shows pronounced oscillations due to the
Aharonov–Bohm interference. When the magnetic field
changes such that the total magnetic flux � = BS through
the dot modifies by the one flux quantum φ0 = h/e, the
conductance demonstrates periodic oscillations with the period
�B = φ0/S (S is the characteristic area of the dot). Using the
actual dot area Sa we get �B = 0.11 T, which is nearly twice
less than extracted from figure 12(a), where �B = 0.25 T.
The discrepancy can be related to a finite extent of the edge
state circulating inside the dot (lB ≈ 35 nm for B = 0.5). As a
result, the area enclosed by the edge state is much smaller than
the geometrical area of the dot.

The resonant energy structure is modified substantially
when a magnetic field is applied, cf figure 12(b) for B = 0.5 T
and figure 11(b) for B = 0 T. The resonant levels exhibit
almost equal separation which can be related to the well-
known Darwin–Fock-type energy spectrum formation for the
corresponding closed dot [23, 70]. The distinguished feature
of the energy level structure is much stronger pinning of the
resonant levels to EF that persists over larger intervals of Vg

in comparison to the B = 0 case. Stronger pinning can
be attributed to the enhanced screening efficiency because
of the increased localization of the wavefunction for the
case of nonzero magnetic field. As we mentioned in the
beginning of this section the strong pinning of the resonant
energy levels in the presence of the magnetic field can have
a profound effect on transport properties of various devices
operating in the edge state transport regime including the
Mach–Zehnder [55] and the Laughlin [56] interferometers as
well as antidot devices [57–60]. It is worth mentioning that
another manifestation of the pinning in the edge state regime
is the well-known effect of formation of the compressible and
incompressible strips near the structure boundary discussed in
section 2.2.
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The findings reported in this section outline the
importance of the first-principle self-consistent quantum
transport calculations for open quantum dots. Indeed,
accounting for both global electrostatics through the Hartree
potential and the quantum mechanical quantization in a self-
consistent way is essential for revealing of the pinning effect
that causes a drastic difference in the conductance of the
interacting and noninteracting electrons. Note that this
effect would not be captured in approaches utilizing model
Hamiltonians where the electron interaction is accounted
thought the classical capacitance charging.

4. Conclusion

We have developed a mean-field approach to study electronic
and transport properties of various low dimensional lateral
structures, including quantum wires, quantum antidots,
quantum point contacts and open quantum dots [11–19]. The
electron interactions and spin effects are included within
the spin density functional theory in the local density
approximation where the conductance, the effective potentials,
the band structure are calculated on the basis of the Green’s
function technique. The developed approach corresponds to
the first-principles magnetoconductance calculation (within the
effective mass approximation), that starts from a geometrical
layout of the device and is free from phenomenological
parameters of the theory. The strength of the present approach
is that it can provide a detailed microscopic information
about electron densities, wavefunctions, potentials, etc. This
is not always possible within approaches relying on model
Hamiltonians containing phenomenological parameters such
as coupling strengths or charging constants. In many cases it
is not always straightforward to relate quantitatively the above
parameters to the physical processes they represent in the real
system and sometimes it is not even obvious whether a model
description is sufficient to capture the essential physics. At
the same time, the DFT approach can deal with large realistic
systems containing hundreds or thousands of electrons. Such
systems would be forbiddingly large for exact methods such
as quantum Monte Carlo or configurational integration. We
have applied the present approach to study the energetics, spin
polarization, effective g factor, magnetosubband and edge state
structure of split-gate and cleaved-edge overgrown quantum
wires as well as to calculate a conductance of quantum point
contacts and open quantum dots. In the present paper we
present a systematic review of the major obtained results.

Electronic, spin, and edge state structure of the split-
gate quantum wires and antidots. We provide a quantitative
description of the structure of edge states in split-gate quantum
wires in the integer quantum Hall regime [11, 12, 15, 19].
We discuss how the spin-resolved subband structure, the
current densities, the confining potentials, as well as the
spin polarization of the electron and current densities evolve
when an applied magnetic field varies. We demonstrate
that the exchange and correlation interactions dramatically
affect the magnetosubbands in quantum wires bringing about
qualitatively new features in comparison to a widely used

Chklovskii et al [6] model of spinless edge states [6]. In
particular, we demonstrate that the exchange interaction can
completely suppress the formation of the compressible strips
and lead to a spatial spin polarization of the edge states. We
also discuss the energetics and the edge state structure of the
quantum antidot and compare them with the corresponding
results for the split-gate quantum wire [14].

Electronic, spin, and edge state structure of the cleaved-
edge overgrown quantum wires. We provide a systematic
quantitative description of the structure of edge states and
magnetosubband evolution in cleaved-edge quantum wires
with a hard wall confinement in the integer quantum Hall
regime [13]. We show that they exhibit different features as
compared to the case of a smooth confinement in the split-gate
wires. In particular, in the hard wall wires a deep and narrow
triangular potential well of the width of the magnetic length is
formed in the vicinity of the wire boundary. The wavefunctions
are strongly localized in this well, which leads to an increase
of the electron density near the edges. In contrast to the case
of a smooth confinement, in the hard wall wires compressible
strips do not form in the vicinity of the wire boundaries and a
spatial spin separation between spin-up and spin-down states
near edges is absent.

We stress that we focused on quantum wires and antidot
structures in the integer quantum Hall regime. It is also
possible to extend present analysis (both for the split-gate and
cleaved-edge overgrown quantum wires as well as the antidots)
to the fractional regime. This requires a proper description of
the exchange and correlations at fractional fillings. (Various
recipes for the parametrization of the exchange and correlation
potential within the framework of the DFT in the regime of
strong fields ν < 1 are reviewed in [7] and [51].) The
strong correlations at fractional filling causes the discontinuity
cups in the full exchange–correlation energy [71, 72] which
is shown to lead to the appearance of incompressible strips at
the edges at fractional filling factors [71]. An extension of the
present methods into fractional Hall regime (which remains to
be developed) would undoubtedly provide new microscopical
insight into the systems at hand.

Conductance and 0.7-anomaly in quantum point contacts.
We studied the role of the electron interaction and spin effects
in transport properties of quantum point contacts [17]. In
particular, we show that both short and long QPCs show the
pronounced plateau-like feature in the conductance at ∼0.5 ×
2e2/h. On the contrary, the experimental data clearly show an
anomaly in the conductance around 0.7 × 2e2/h. Therefore,
while the spin-DFT-based ‘first-principle’ calculations predict
the spin polarization in the QPC structure, the calculated
conductance clearly does not reproduce the 0.7-anomaly
observed in almost all QPCs of various geometries. (It should
be stressed that the calculated 0.5 plateau corresponds to
the complete suppression of one spin channel, whereas
experimentally observed 0.7-anomaly means that both spin
channels are present in the conductance). We have critically
examined the obtained results and argue that the inability
of the DFT approach to reproduce quantitatively the 0.7-
anomaly may be due to the uncorrected self-interaction errors
in the DFT transport calculation (related to the derivative
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discontinuity in the exchange–correlation potential Vxc [8])
for the case when localization of charge is expected to
occur, so that the magnetic impurity formation may be an
artifact of the DFT due to the spurious self-interaction. Our
results thus outline the need for further theoretical studies
of the QPC conductance based on the approaches that go
beyond the standard DFT + LDA scheme and that account
for the derivative discontinuity in the Vxc or utilize similar
corrective schemes eliminating the self-interaction errors of
the DFT + LDA. Another reason for not recovering of the
0.7-anomaly can be related to the fact that the DFT + LDA
approximation might overestimate the spatial spin polarization
near the smooth boundaries. This conclusion follows from a
comparison of the DFT and Hartree–Fock calculations for the
quantum wire [19]. Thus, further studies of quantum wires
based on the exact approaches (e.g. quantum Monte Carlo, etc)
are needed in order to resolve this issue.

Effect of electron interaction in open quantum dots. We
have revised the role of the electron–electron interaction in
transport properties of open quantum dots. In particular, we
revealed a pronounced effect of pinning of the resonant levels
to the Fermi energy due to the enhanced screening [16]. Our
results represent a significant departure from a conventional
picture adopted in most model Hamiltonians as well as in
more sophisticated numerical calculations where a variation of
external parameters (such as a gate voltage, magnetic field, etc)
causes the successive dot states to sweep past the Fermi level
in a linear fashion. We instead demonstrate highly nonlinear
behavior of the resonant levels in the vicinity of the Fermi
energy. One of the observable consequence of this effect
is smearing of the conductance fluctuations. We also show
that the resonant level pinning becomes especially pronounced
in magnetic field. Thus, accounting for this effect might
be important for the interpretation of the magnetotransport
experiment in open structures, including e.g. recent studies
of the electronic Mach–Zehnder interferometer [55] and
the Laughlin quasi-particle interferometer [56], structures
designed to test the realization of the topological quantum
computing [57], antidot structures [58–60] and others. We also
demonstrate that in the regime of the ultralow temperatures
2πkBT � � (� being the mean-level spacing), the electron
interactions strongly smears the conductance oscillations and
thus significantly affects their statistics. Our calculations are
in good quantitative agreement with the observed ultralow
temperature statistics of Huibers et al. Our findings question
a conventional interpretation of the ultralow temperature
saturation of the coherence time in open dots which is
based on the noninteracting theories where the agreement
with the experiment is achieved by introducing additional
phenomenological channels of dephasing [18].

We finally note that a developed theoretical approach for
conductance calculation in open systems is limited to the case
of the strong coupling (G > G0) as well as to the integer
quantum Hall (IQH) regime (filling factor ν > 1). First-
principles description of weakly coupled IQH systems as well
as the fractional quantum Hall systems (both in the weak and
strong coupling regimes) has not been reported yet and still
represents a challenge to the theory.
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